A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

نویسندگان

  • Hongze Li
  • Sen Guo
  • Chun-jie Li
  • Jingqi Sun
چکیده

0950-7051/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.knosys.2012.08.015 ⇑ Corresponding author. Tel.: +86 15811424568; fa E-mail address: [email protected] (S. Guo). Accurate annual power load forecasting can provide reliable guidance for power grid operation and power construction planning, which is also important for the sustainable development of electric power industry. The annual power load forecasting is a non-linear problem because the load curve shows a non-linear characteristic. Generalized regression neural network (GRNN) has been proven to be effective in dealing with the non-linear problems, but it is very regretfully finds that the GRNN have rarely been applied to the annual power load forecasting. Therefore, the GRNN was used for annual power load forecasting in this paper. However, how to determine the appropriate spread parameter in using the GRNN for power load forecasting is a key point. In this paper, a hybrid annual power load forecasting model combining fruit fly optimization algorithm (FOA) and generalized regression neural network was proposed to solve this problem, where the FOA was used to automatically select the appropriate spread parameter value for the GRNN power load forecasting model. The effectiveness of this proposed hybrid model was proved by two experiment simulations, which both show that the proposed hybrid model outperforms the GRNN model with default parameter, GRNN model with particle swarm optimization (PSOGRNN), least squares support vector machine with simulated annealing algorithm (SALSSVM), and the ordinary least squares linear regression (OLS_LR) forecasting models in the annual power load forecasting. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction

Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN) and the fruit fly optimization algorithm (FOA) is proposed. Firstly, a feature selection met...

متن کامل

Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA

As a kind of clean and renewable energy, wind power is winning more and more attention across the world. Regarding wind power utilization, safety is a core concern and such concern has led to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed, this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD) and the general r...

متن کامل

پیش‌‌بینی کوتاه مدت قیمت تراکم گرهی در یک سیستم قدرت بزرگ تجدید ساختار یافته با استفاده از شبکه‌های عصبی مصنوعی با بهینه‌سازی آموزش ژنتیکی

In a daily power market, price and load forecasting is the most important signal for the market participants. In this paper, an accurate feed-forward neural network model with a genetic optimization levenberg-marquardt back propagation (LMBP) training algorithm is employed for short-term nodal congestion price forecasting in different zones of a large-scale power market. The use of genetic algo...

متن کامل

Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008

Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2013